解:p=x+1/x+y+1/y =(x+y)+1/x+1/y =(x+y)/xy + 1 =1/xy +1 因x+y>=2 √xy 即2√xy<=1 xy<=1/4 当x=y时,xy取最大值为1/4,则1/xy取最小值为4 所以P的最小最为1+4=5满意请采纳